缓存一致性目录
缓存一致性目录
引入缓存提高性能
业务起步节点直接开始操作数据库就好
但随着业务量的增长,你的项目请求量越来越大,这时如果每次都从数据库中读数据,那肯定会有性能问题。
这个阶段通常的做法是,引入「缓存」来提高读性能
最简单直接的方案是数据直接放到到缓存:
- 数据库的数据,全量刷入缓存(不设置失效时间)
- 写请求只更新数据库,不更新缓存
- 启动一个定时任务,定时把数据库的数据,更新到缓存中
但这样会导致一些一致性的问题, 数据库与reids的数据不一致, 有些数据的利用率低也会占用缓存
缓存利用率与一致性问题
想要缓存利用率「最大化」,我们很容易想到的方案是,缓存中只保留最近访问的「热数据」。但具体要怎么做呢?
我们可以让写操作只写数据库
读请求先读取缓存, 如果缓存不存在, 则去数据库里重建缓存, 同时写入缓存的数据都要设置失效的时间
再来看数据一致性问题
这个时候不能用定时任务去更新缓存了, 我们要修改一条数据时,不仅要更新数据库,也要连带缓存一起更新。
但数据库和缓存都更新,又存在先后问题,那对应的方案就有 2 个:
- 先更新缓存,后更新数据库
- 先更新数据库,后更新缓存
先不考虑并发问题,正常情况下,无论谁先谁后,都可以让两者保持一致,但现在我们需要重点考虑「异常」情况。
但不论如何在这两种方案的第二步出问题的情况下都会有数据不一致的问题.
但其实还有一个并发问题也会影响数据一致性
并发引入的一致性问题
假设我们采用「先更新数据库,再更新缓存」的方案,并且两步都可以「成功执行」的前提下,如果存在并发,情况会是怎样的呢?
有线程 A 和线程 B 两个线程,需要更新「同一条」数据,会发生这样的场景:
相关信息
线程 A 更新数据库(X = 1)
线程 B 更新数据库(X = 2)
线程 B 更新缓存(X = 2)
线程 A 更新缓存(X = 1)
最终 X 的值在缓存中是 1,在数据库中是 2,发生不一致。
也就是说,A 虽然先于 B 发生,但 B 操作数据库和缓存的时间,却要比 A 的时间短,执行时序发生「错乱」,最终这条数据结果是不符合预期的。
相关信息
同样地,采用「先更新缓存,再更新数据库」的方案,也会有类似问题,这里不再详述。
那怎么解决这个问题呢?这里通常的解决方案是,加「分布式锁」。
两个线程要修改「同一条」数据,每个线程在改之前,先去申请分布式锁,拿到锁的线程才允许更新数据库和缓存,拿不到锁的线程,返回失败,等待下次重试。
这么做的目的,就是为了只允许一个线程去操作数据和缓存,避免并发问题。
除此之外,我们从「缓存利用率」的角度来评估这个方案,也是不太推荐的。
这是因为每次数据发生变更,都「无脑」更新缓存,但是缓存中的数据不一定会被「马上读取」,这就会导致缓存中可能存放了很多不常访问的数据,浪费缓存资源。
而且很多情况下,写到缓存中的值,并不是与数据库中的值一一对应的,很有可能是先查询数据库,再经过一系列「计算」得出一个值,才把这个值才写到缓存中。
由此可见,这种「更新数据库 + 更新缓存」的方案,不仅缓存利用率不高,还会造成机器性能的浪费。
所以此时我们需要考虑另外一种方案:删除缓存。
删除缓存可以保证一致性吗
删除缓存对应的方案也有 2 种:
先删除缓存,后更新数据库
先更新数据库,后删除缓存
同样地,先来看「第二步」操作失败的情况。
先删除缓存,后更新数据库,第二步操作失败,数据库没有更新成功,那下次读缓存发现不存在,则从数据库中读取,并重建缓存,此时数据库和缓存依旧保持一致。
但如果是先更新数据库,后删除缓存,第二步操作失败,数据库是最新值,缓存中是旧值,发生不一致。所以,这个方案依旧存在问题。
总之,和前面提到的问题类似,第二步失败依旧有不一致的风险。
好,我们再来看「并发」问题,这个问题是我们需要关注的「重点」。
- 先删除缓存,后更新数据库
如果有 2 个线程要并发「读写」数据,可能会发生以下场景:
线程 A 要更新 X = 2(原值 X = 1)
线程 A 先删除缓存
线程 B 读缓存,发现不存在,从数据库中读取到旧值(X = 1)
线程 A 将新值写入数据库(X = 2)
线程 B 将旧值写入缓存(X = 1)
最终 X 的值在缓存中是 1(旧值),在数据库中是 2(新值),发生不一致。
可见,先删除缓存,后更新数据库,当发生「读+写」并发时,还是存在数据不一致的情况。
- 先更新数据库,后删除缓存
依旧是 2 个线程并发「读写」数据:
缓存中 X 不存在(数据库 X = 1)
线程 A 读取数据库,得到旧值(X = 1)
线程 B 更新数据库(X = 2)
线程 B 删除缓存
线程 A 将旧值写入缓存(X = 1)
最终 X 的值在缓存中是 1(旧值),在数据库中是 2(新值),也发生不一致。
这种情况「理论」来说是可能发生的,但实际真的有可能发生吗?
其实概率「很低」,这是因为它必须满足 3 个条件:
缓存刚好已失效
读请求 + 写请求并发
更新数据库 + 删除缓存的时间(步骤 3-4),要比读数据库 + 写缓存时间短(步骤 2 和 5)
仔细想一下,条件 3 发生的概率其实是非常低的。
因为写数据库一般会先「加锁」,所以写数据库,通常是要比读数据库的时间更长的。
这么来看,「先更新数据库 + 再删除缓存」的方案,是可以保证数据一致性的。
所以,我们应该采用这种方案,来操作数据库和缓存。
好,解决了并发问题,我们继续来看前面遗留的,第二步执行「失败」导致数据不一致的问题。
如何保证两步都执行成功?
前面我们分析到,无论是更新缓存还是删除缓存,只要第二步发生失败,那么就会导致数据库和缓存不一致。
保证第二步成功执行,就是解决问题的关键。
想一下,程序在执行过程中发生异常,最简单的解决办法是什么?
答案是:重试。
是的,其实这里我们也可以这样做。
无论是先操作缓存,还是先操作数据库,但凡后者执行失败了,我们就可以发起重试,尽可能地去做「补偿」。
那这是不是意味着,只要执行失败,我们「无脑重试」就可以了呢?
答案是否定的。现实情况往往没有想的这么简单,失败后立即重试的问题在于:
立即重试很大概率「还会失败」
「重试次数」设置多少才合理?
重试会一直「占用」这个线程资源,无法服务其它客户端请求
看到了么,虽然我们想通过重试的方式解决问题,但这种「同步」重试的方案依旧不严谨。
那更好的方案应该怎么做?
答案是:异步重试。什么是异步重试?
其实就是把重试请求写到「消息队列」中,然后由专门的消费者来重试,直到成功。
或者更直接的做法,为了避免第二步执行失败,我们可以把操作缓存这一步,直接放到消息队列中,由消费者来操作缓存。
到这里你可能会问,写消息队列也有可能会失败啊?而且,引入消息队列,这又增加了更多的维护成本,这样做值得吗?
这个问题很好,但我们思考这样一个问题:如果在执行失败的线程中一直重试,还没等执行成功,此时如果项目「重启」了,那这次重试请求也就「丢失」了,那这条数据就一直不一致了。
所以,这里我们必须把重试消息或第二步操作放到另一个「服务」中,这个服务用「消息队列」最为合适。这是因为消息队列的特性,正好符合我们的需求:
消息队列保证可靠性:写到队列中的消息,成功消费之前不会丢失(重启项目也不担心)
消息队列保证消息成功投递:下游从队列拉取消息,成功消费后才会删除消息,否则还会继续投递消息给消费者(符合我们重试的需求)
至于写队列失败和消息队列的维护成本问题:
写队列失败:操作缓存和写消息队列,「同时失败」的概率其实是很小的
维护成本:我们项目中一般都会用到消息队列,维护成本并没有新增很多
所以,引入消息队列来解决这个问题,是比较合适的。
那如果你确实不想在应用中去写消息队列,是否有更简单的方案,同时又可以保证一致性呢?
方案还是有的,这就是近几年比较流行的解决方案:订阅数据库变更日志,再操作缓存。
具体来讲就是,我们的业务应用在修改数据时,「只需」修改数据库,无需操作缓存。
那什么时候操作缓存呢?这就和数据库的「变更日志」有关了。
拿 MySQL 举例,当一条数据发生修改时,MySQL 就会产生一条变更日志(Binlog),我们可以订阅这个日志,拿到具体操作的数据,然后再根据这条数据,去删除对应的缓存。
订阅变更日志,目前也有了比较成熟的开源中间件,例如阿里的 canal,使用这种方案的优点在于:
无需考虑写消息队列失败情况:只要写 MySQL 成功,Binlog 肯定会有
自动投递到下游队列:canal 自动把数据库变更日志「投递」给下游的消息队列
当然,与此同时,我们需要投入精力去维护 canal 的高可用和稳定性。
如果你有留意观察很多数据库的特性,就会发现其实很多数据库都逐渐开始提供「订阅变更日志」的功能了,相信不远的将来,我们就不用通过中间件来拉取日志,自己写程序就可以订阅变更日志了,这样可以进一步简化流程。
至此,我们可以得出结论,想要保证数据库和缓存一致性,推荐采用「先更新数据库,再删除缓存」方案,并配合「消息队列」或「订阅变更日志」的方式来做。
主从库延迟和延迟双删问题
到这里,还有 2 个问题,是我们没有重点分析过的。
第一个问题,还记得前面讲到的「先删除缓存,再更新数据库」导致不一致的场景么?
这里我再把例子拿过来让你复习一下:
2 个线程要并发「读写」数据,可能会发生以下场景:
线程 A 要更新 X = 2(原值 X = 1)
线程 A 先删除缓存
线程 B 读缓存,发现不存在,从数据库中读取到旧值(X = 1)
线程 A 将新值写入数据库(X = 2)
线程 B 将旧值写入缓存(X = 1)
最终 X 的值在缓存中是 1(旧值),在数据库中是 2(新值),发生不一致。
第二个问题:是关于「读写分离 + 主从复制延迟」情况下,缓存和数据库一致性的问题。
如果使用「先更新数据库,再删除缓存」方案,其实也发生不一致:
线程 A 更新主库 X = 2(原值 X = 1)
线程 A 删除缓存
线程 B 查询缓存,没有命中,查询「从库」得到旧值(从库 X = 1)
从库「同步」完成(主从库 X = 2)
线程 B 将「旧值」写入缓存(X = 1)
最终 X 的值在缓存中是 1(旧值),在主从库中是 2(新值),也发生不一致。
看到了么?这 2 个问题的核心在于:缓存都被回种了「旧值」。
那怎么解决这类问题呢?
最有效的办法就是,把缓存删掉。
但是,不能立即删,而是需要「延迟删」,这就是业界给出的方案:缓存延迟双删策略。
按照延时双删策略,这 2 个问题的解决方案是这样的:
解决第一个问题:在线程 A 删除缓存、更新完数据库之后,先「休眠一会」,再「删除」一次缓存。
解决第二个问题:线程 A 可以生成一条「延时消息」,写到消息队列中,消费者延时「删除」缓存。
这两个方案的目的,都是为了把缓存清掉,这样一来,下次就可以从数据库读取到最新值,写入缓存。
但问题来了,这个「延迟删除」缓存,延迟时间到底设置要多久呢?
问题1:延迟时间要大于「主从复制」的延迟时间
问题2:延迟时间要大于线程 B 读取数据库 + 写入缓存的时间
但是,这个时间在分布式和高并发场景下,其实是很难评估的。
很多时候,我们都是凭借经验大致估算这个延迟时间,例如延迟 1-5s,只能尽可能地降低不一致的概率。
所以你看,采用这种方案,也只是尽可能保证一致性而已,极端情况下,还是有可能发生不一致。
所以实际使用中,我还是建议你采用「先更新数据库,再删除缓存」的方案,同时,要尽可能地保证「主从复制」不要有太大延迟,降低出问题的概率。
可以做到强一致吗?
看到这里你可能会想,这些方案还是不够完美,我就想让缓存和数据库「强一致」,到底能不能做到呢?
其实很难。
要想做到强一致,最常见的方案是 2PC、3PC、Paxos、Raft 这类一致性协议,但它们的性能往往比较差,而且这些方案也比较复杂,还要考虑各种容错问题。
相反,这时我们换个角度思考一下,我们引入缓存的目的是什么?
没错,性能。
一旦我们决定使用缓存,那必然要面临一致性问题。性能和一致性就像天平的两端,无法做到都满足要求。
而且,就拿我们前面讲到的方案来说,当操作数据库和缓存完成之前,只要有其它请求可以进来,都有可能查到「中间状态」的数据。
所以如果非要追求强一致,那必须要求所有更新操作完成之前期间,不能有「任何请求」进来。
虽然我们可以通过加「分布锁」的方式来实现,但我们也要付出相应的代价,甚至很可能会超过引入缓存带来的性能提升。
所以,既然决定使用缓存,就必须容忍「一致性」问题,我们只能尽可能地去降低问题出现的概率。
同时我们也要知道,缓存都是有「失效时间」的,就算在这期间存在短期不一致,我们依旧有失效时间来兜底,这样也能达到最终一致。
总结
好了,总结一下这篇文章的重点。
1、想要提高应用的性能,可以引入「缓存」来解决
2、引入缓存后,需要考虑缓存和数据库一致性问题,可选的方案有:「更新数据库 + 更新缓存」、「更新数据库 + 删除缓存」
3、更新数据库 + 更新缓存方案,在「并发」场景下无法保证缓存和数据一致性,解决方案是加「分布锁」,但这种方案存在「缓存资源浪费」和「机器性能浪费」的情况
4、采用「先删除缓存,再更新数据库」方案,在「并发」场景下依旧有不一致问题,解决方案是「延迟双删」,但这个延迟时间很难评估
5、采用「先更新数据库,再删除缓存」方案,为了保证两步都成功执行,需配合「消息队列」或「订阅变更日志」的方案来做,本质是通过「重试」的方式保证数据最终一致
6、采用「先更新数据库,再删除缓存」方案,「读写分离 + 主从库延迟」也会导致缓存和数据库不一致,缓解此问题的方案是「延迟双删」,凭借经验发送「延迟消息」到队列中,延迟删除缓存,同时也要控制主从库延迟,尽可能降低不一致发生的概率